Vliv mrtvé doby při dozimetrii benigního onemocnění štítné žlázy

Samuel Šrobár, Pavel Solný

Mrtvá doba т

- Doba, po kterou detektor po detekci částice není schopen detekovat další částici
- Paralizabilní mrtvá doba pokud částice interaguje během mrtvé doby, prodlužuje dobu necitlivosti detektoru
- Neparalizabilní mrtvá doba okno necitlivosti detektoru je fixní
- Pro terapeutické pacienty benigních onemocnění ŠŽ se snadno dostaneme do oblasti nelinearity
- Nutná korekce pro verifikační dozimetrické měření

M...měřená četnost N...skutečná četnost T...mrtvá doba detektoru

Parametry gamakamery udané výrobcem

- Krystal 9,5mm Nal(TI)
- Energetické rozlišení ≤9,4%
- Rozsah energií 55-400keV
- Max cps bez rozptylu 250 000 s⁻¹ s rozptylem 180 000 s⁻¹
- Počet fotonásobičů 14
- UFOV kruhové, průměr 21cm

Pozn. od 280 000 cps se nenavyšuje ani neklesá četnost, 250 000 cps je jako rezerva

Oblast linearity ^{99m}Tc

- ^{99m}Tc vhodný radionuklid:
- T_{1/2} (^{99m}T)=6h => možnost změření rozpadové křivky přes víkend
- E_Y(^{99m}Tc)=140,5keV=> i případný pile-up efekt spadá do energetického rozsahu kamery

Oblast linearity ^{99m}Tc a ¹³¹I - motivace

- ^{99m}Tc vhodný radionuklid:
- T_{1/2} (^{99m}T)=6h => možnost změření rozpadové křivky přes víkend
- E_Y(^{99m}Tc)=140,5keV=> i případný pileup efekt spadá do energetického rozsahu kamery

 T_{1/2} (¹³¹I)=8,02 dní => nutno použít metodu několik aktivit ve stejné geometrií

• E _Y (¹³¹ I)	intenzita
364 keV	81,5%
637 keV	7,16%
284 keV	6,12%
80 keV	2,62%
723 keV	1,77%

 Dvě gama linky jsou mimo energetický rozsah kamery. Je nutná korekce?

^{99m}Tc a ¹³¹I - měření

- Všechna měření bez kolimátoru
- přepokládáme, že tvar spektra nemá vliv na pokles četnosti v důsledku mrtvé doby (! spoiler: zjistíme, že to asi není pravda)
- nemáme tak silné zdroje ¹³¹I (během pracovních dní) abychom se dostali do oblasti nelinearity s nasazeným HPGE kolimátorem

Měření ^{99m}Tc – blízká geometrie

140 keV±10%

53,57MBg

240s

720

- Vzdálenost zdroj-krystal: 42cm
- Energetické okno ^{99m}Tc:
- Aktivita (začátek měření):
- Doba snímku:
- počet snímků:
- Celková doba (cca) $48h = 8*T_{1/2}(^{99m}Tc)$

Měření ^{99m}Tc – daleká geometrie

140 keV±10%

180cm

573MBq

20s

720

- Vzdálenost zdroj-krystal:
- Energetické okno ^{99m}Tc:
- Aktivita (začátek měření):
- Doba snímku:
- počet snímků:
- Celková doba (cca) 40h = 6,67*T_{1/2}(^{99m}Tc)

Měření ¹³¹I – blízká geometrie

- Vzdálenost zdroj-krystal: 42cm
- Energetické okno¹³¹I: 364 keV±10%
- Doba měření : 40s
- Jako zdroje použito 10 kapslí o aktivitě 2,19–2,38 MBq různě nakombinovány
- měřená aktivita od do: 2,373 21,438 MBq

Výsledky ^{99m}Tc – daleká geometrie

- Skutečná četnost N=k*A. Směrnici "k" získáme lineární regresí oblasti s nízkou měřenou četností
- Fitujeme lineární závislostí postupně od nejnižší četnosti po nejvyšší.

Oblast linearity ^{99m}Tc – daleká geometrie

- Skutečná četnost N=k*A. Směrnici "k" získáme lineární regresí oblasti s nízkou měřenou četností
- Fitujeme lineární závislostí postupně od nejnižší četnosti po nejvyšší.

Výsledky ^{99m}Tc – daleká geometrie

 V oblasti měřené četnosti 5 000-12 000 cps se směrnice fitu mění jen málo a nejnižší nejistotu má pro četnost 11 000 cps. To určíme jako optimální oblast pro stanovení přepočtu mezi aktivitou A a skutečnou četností N=k*A, k=626,16 ± 0,036

Výsledky ^{99m}Tc – blízká geometrie

- Pro dalekou geometrií OK. Co blízká? Analogickým postupem dostáváme tyto výsledky
- "Plató" pro směrnici i minimum nejistoty se posunulo k nižším četnostem

Výsledky ^{99m}Tc – blízká geometrie

- Optimum je fitovat četnost lineárně do 5 000 cps. Pro přepočet N=A*k dostáváme k= 13119,6 ± 1,76
- Fitem do 20 000 cps dostávamé k= 12968,2 ± 3.82 což se liší jen o 1,2% takže stále dobré

Výsledky ¹³¹I – blízká geometrie

 U ^{99m}Tc sme dosahovali nejnižších četností kolem 3 000 cps. U ¹³¹I je minimální četnosti 17 000 cps.

A[MBq]	Cps-pozadí	
2,373	17 327	
4,756	34 234	
7,137	50 855	
9,518	66 146	
9,524	66 277	
10,98	75 831	
14,28	95 738	
15,37	102 685	
19,77	126 716	
21,44	134 582	

Mrtvá doba 131

 4 modely: neparalizabilní(NeparMD), paralizabilní (ParMD) a škálované verze (ParMD-š, NeparMD-š)

Mrtvá doba 131

 4 modely: paralizabilní (ParMD), neparalizabilní (NeparMD) a škálované verze (ParMD-š, NeparMD-š)

Model		Parametry modelu	2.5 Lineární fit Neparalizablní mrtvá doba Paralizablní mrtvá doba šakálovaná
NeperMD	Т	932,2±33,87 ns	2 Paralizabilní mrtvá doba škálovaná Měření
NepariviD	s	1 (z definice)	
DerMD	т	879,9 ± 27,30 ns	tš 1.5 -
PariviD	s	1 (z definice)	ná četn
	т	1245,2 ± 44,81 ns	
NepariviD-s	s	1.041 ± 0,0058	
	т	1109,6 ± 29,80 ns	0.5 -
PariviD-S	s	$1.035 \pm 0,0048$	
			- 0 0 0 0.5 1 1.5 2 skutečná četnost

Mrtvá doba 131

• Výběr nejsprávnějšího modelu podle AIC (Akaike information criterion)-závisí od počtu parametrů V a logaritmu maximální věrohodnosti (likelihood): $AIC = 2V - 2ln(\hat{L})$

Model	AIC	Porovnání modelů	
NeparMD	217,430	3,120*10 ⁻⁰⁶	
ParMD	214,902	1,132*10 ⁻⁰⁵	
NeparMD-š	196,312	0,123	
ParMD-š	192,125	1	

Relativní porovnání modelů na základe AIC:

 $e^{([AIC_{min}-AIC_n]/2)}$

AICmin...nejmenší AIC AICn.... AIC pro n-tý model

Mrtvá doba ¹³¹I a ^{99m}Tc porovnání

- Optimámní model škálovaná paralizabilní MD
- Porovnání s ^{99m}Tc škála vychází prakticky s=1 => u ^{99m}Tc platí klasický vztah pro pralizabilní MD
- Odpovída předpokladu, že u měření ^{99m}Tc nedopadá na kameru nic mimo jejího energetického rozsahu
- U ¹³¹I je skutečná četnost impulzů o 3,5% vyšší kvůli E_γ=637 keV o intenzitě 7,16%. Po přepočtu uvážení účinností by měl být příspěvek 5,2% ale něco po comptonovském rozptylu přispěje do energetického okna problém pro MC simulace

měření	Т	S
¹³¹ l blízko	1110 ± 30 ns	$1,035 \pm 0,005$
^{99m} Tc blízko	693,8 ± 0,1	1,000 ± (2,7*10 ⁻⁵)
^{99m} Tc daleko	5,460 ± 0,35	1,001 ± (8,7*10 ⁻⁵)

Mrtvá doba ¹³¹I a ^{99m}Tc porovnání

 Mrtvá doba není stejná pro různé konfigurace, závisí na geometrii (nehomogenní zatížení fotonásobičů?) a radionuklidu (od maximální energie nebo od tvaru spektra?) – pro klinické využití nutno měřit pro danou geometrií, nuklid a kolimátor, nemůžeme si to (moc) zlehčovat

měření	Т	S
¹³¹ l blízko	1109,6 ± 29,80 ns	$1,035 \pm 0,0048$
^{99m} Tc blízko	693,8 ± 0,11	1,000 ± (2,7*10 ⁻⁵)
^{99m} Tc daleko	5,460 ± 0,35	1,001 ± (8,7*10 ⁻⁵)

Příspěvek k četnosti od 637 keV

E _γ [keV]	μ[cm ⁻¹] ⁽¹⁾	Intensity %	P(interakce) ⁽²⁾ [%]	Příspěvek ⁽³⁾ [%]
284	0,651	6,12	46,140	8,702
364	0,475	81,5	36,349	91,298
637	0,287	7,16	23,839	5,260

(1) zdroj: W.Mannhart and H.Vonach : Gamma-ray Absorption coefficient for NaI(TI)
(2) pravděpodobnost úplné <u>absorpce v krystalu NaI(TI) o tloušťce d=9,5</u>mm podle:

$$P(interakce) = (1 - e^{(-\mu d)})$$

(3)příspěvek je normovaný na součet intenzity a P(interakce) od 284keV a 364keV – ty spadají do energetického rozsahu (jejich příspěvky v součtu=100%)

- U ¹³¹I je skutečná četnost impulzů o 3,5% vyšší kvůli E_Y=637 keV o intenzitě 7,16%. Po přepočtu uvážení účinností by měl být příspěvek 5,26% ale něco přispěje do energetického okna po comptonovském rozptylu – problém vyžadující MC simulace
- Neuvažujeme sumace impulzů mimo energetické okno

Korekce

Korekce **C** převádí měřenou četnost **M** na skutečnou četnost **N** a je funkcí **M**

$$N = C(M)M$$

$$M = sNe^{(-sN\tau)} = sC(M)Me^{(-sCM\tau)}$$

Řešením funkce tvaru $x = xe^x$ je lambertova W funkce, která není elementární funkcí

Pro náš připad má korekce potom

$$C(M) = \frac{-W(-sM\tau)}{(sM\tau)}$$

Nebo můžeme body interpolovat...

tvar:

Demonstrace vlivu korekce na verifikaci dávky

$$fit = cps_0 * exp\left(\frac{-ln(2) * t}{T_{ef}}\right) - exp\left(\frac{-ln(2) * t * T_{ef} + T_{up}}{T_{ef} * T_{up}}\right)$$

	Bez korekce	S korekcí
cps ₀	465347±61014	277919±8750
T _{ef} [d]	5,58±1,78	10,33±1,60
Tup [d]	0,405±0,098	0,267±0,019

Poměr ploch pod křivkou nekorigovaného fitu ke korigovanému je 86,5%. Dávka je přimo úměrná ploše pod křivkou. Jinými slovy, bez korekce by jsme podhodnotili dávku o 13.5%.

U nekorigovaných dat dokonce v tomto případě dostáváme nefyzikální efektivní poločas. T_{1/2}(¹³¹I)=8,02d Vygenerované data měření pacienta pro T_{ef} =6d, T_{up} =0,3d a cps₀=300 000 (±randomizace hodnot)

Závěr

- Korekce nutná pro měření pacientů se SŽ kterým byla podána terapeutická aktivita (u CA se v zorném poli kamery tolik aktivity nenachází)
- POUŽÍVAT HEGP na měření radiojódu, pro MEGP se snadno dosáhne oblast nelinearity
- Nutno prozkoumat vliv kolimátoru, geometrie jak moc to ovlivní korekci?

Děkujeme za pozornost

